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Abstract --_5 :_-

We study the cosmology resulting from two coupled scalar fields, one which is either

a new inflation or chaotic type inflaton and the other which has an exponentially

decaying potential. Such a potential may appear in the conformally transformed frame

of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints

necessary for successful inflation are examined. We find conventional GUT models

such as SU(5) are compatible with new inflation, while restrictions on the self-coupling

constant are significantly loosened for chaotic inflation.
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The inflationary cosmology[l] purports to solve many longstanding cosmological prob-

lems, and has been the subject of much investigation during the previous decade[2]. However,

there is no fully satisfactory model for the source of inflation yet. In this letter, we consider

a matter content described by two coupled scalar fields, one of which has a decaying poten-

tial and the other which serves as the inflaton driving the expansion. In this theory, the

constraints placed upon previous models are considerably loosened.

Inflation with two scalar fields has been considered before, with effects such as consequent[3]

and double[4] inflation arising. The extended inflationary scenario[5] uses the Jordan-Brans-

Dicke (JBD) scalar[6] to achieve expansion which is slower than exponential. Applied to the

original old inflationary scenario, a successful completion of the inflationary phase may be

possible. The chaotic inflation model in the JBD theory has also been investigated[7].

The potential which will be discussed here arises in the following two cases: (i) Some

supergravity or superstring models produce an exponential potential coupled to other scalar

fields [8]. (ii) In the generalized Einstein theories, which are conformally equivalent to stan-

dard Einstein gravity with a scalar field, the potential of a standard scalar field is modified

to obtain such coupling in the conformal frame[9]. The generalized Einstein theories include

the JBD theory, induced gravity[10], any theory with non-minimal coupling, the curvature

squared theory and effective four-dimensional theories arising from a higher-dimensional uni-

fied theory. In such cases we should also discuss what happens in the original physical frame.

Decaying potentials have recently been considered by Peebles and Ratra[ll] to account for

the dark matter in the universe.

The decaying exponential potential in our model produces the same effect as the JBD

scalar in the extended inflation scenario, to reduce the rate of expansion. As the inflaton rolls

down a flat plateau, the other scalar field evolves on the exponential potential, resulting in

power-law inflation[12,13]. Although we find weaker inflation than in the conventional new

and chaotic models, we obtain a longer period of inflation due to this coupling and the much



smaller potential energy at the end of inflation. Naively speaking, since the energy scale at

the period of horizon crossing is related to density perturbations, we expect much weaker

constraints on the parameters of inflation. When the inflaton is of new inflation type, the fine

tuning of initial conditions is lessened and density perturbations are suppressed. For a chaotic

type field, the restrictions placed upon the coupling parameter by density perturbations are

reduced considerably. We will investigate whether the Coleman-Weinberg potential in the

standard GUT model yields successful new inflation and what restrictions on the coupling

A are necessary for successful chaotic inflation.

We use as our action

where t¢2 = 8rG, V(¢) is the inflaton potential and g is a dimensionless coupling constant,

which must be smaller than _ to guarantee power-law inflation. Although presently known

supergravity models yield/3 > v_, we may realize power-law inflation with the help of vis-

cosity due to particle production[13]. Furthermore, it is possible in the generalized Einstein

theories to have small enough/3, e. 9. /3 = 2(,_ + 3/2) -1/2 for the JBD theory, with the JBD

parameter w > 1/2 [9].

Working in the spatially flat Friedmann-Robertson-Walker metrlc With cosmic scale factor

a(t), we find from the field equations:

4- 3H¢-/3_¢e-a"%'(¢) = 0, (2)

,_ + 3H,], + V'(¢)e -z'_ = O, (3)

"if" _2 + ¢2 + V(¢)e-_, , (4)

where H = h/a is the Hubble parameter, an overdot denotes time derivation, and a prime

denotes differentiation with respect to the argument of the function.

Inflation occurs as ¢ slowly rolls down the potential V(¢) with its amplitude further

decreasing as e-a*_. During this period, _ and ¢2/2 can be neglected in (3) and (4),



respectively. If/32 << 6, this ansatz is true until _b rolls down into the field-oscillation region.

We then find a unique attractor of the power-law inflationary solution [13]:

2 (5)

a = ao(t/to) 2/_2, (6)

f(_,) --- f(_'o)- (1 - 32/6)ln(a/ao), (7)

where

exp[3_¢c] = 12(1 -/32/6) ' f(¢) _ d_b , (8)

and the subscript 0 denotes the value at to when the universe enters the inflationary phase.

While the initial value of ¢ may be arbitrary, the spacetime evolves into the above power-law

inflationary phase in a few expansion times, since the above solution is the unique attractor.

Thus, any value of ¢ approaches ¢0 - ¢c + 2(3x) -1 In(to�x) at to.

We consider the three constraints imposed by the horizon problem, density perturba-

tions and the reheating temperature, both with a new inflation type Coleman-Weinberg

potential[14], and a chaotic type potential. The former may be approximated for small ¢

v(e) = yo- (9)

where V0 is the GUT scale and A ,-_ 1/2 for the SU(5) model, although A depends weakly on

V0 as well. For the latter we consider

v(¢) = (lo)
n

with n an even integer and A" arbitrary for now. A main problem of ordinary chaotic inflation

is the fine-tuned small value of the coupling parameter imposed by density perturbations[l],

in particular _4_10 -12 for the quartic'case.

When the scalar field ¢ evolves into the oscillation phase, inflation will end. Hence the

condition l¢/3H¢ls _ 1, or equivalently I(ha V)"]t ", 3_2(1 - 3_/6) -', fixes the value of ¢I,



wherea subscript f denotes the value at the end of inflation. Then we find

f(¢) = ,¢2V012A¢2 and

f(¢) = ,¢2_2/2n and

_¢f = [_'y0/_(1 - Z_/6)]'/2

_¢¢f= [n(1- fl2/6)/3]1/2 for

The horizon problem will be solved if[12]

for new inflation (11)

chaotic inflation (12)

a-z_ 1-_2/2 >103° TRu''_ax (13)
a 01 "" WlpL

where mPL is the Planck mass and TRH, max is the maximal possible reheating temperature,

given by H_ = tc27r2g.T_H,m_x/90, with g.(T) ~ 100 the effective number of particle species.

Another constraint comes from density perturbations. In particular, results from the

cosmic microwave background radiation imply that _Sp/p < I0 -4, where _p is the perturbation

in the density p. Generalizing the result of Lucchin and Matarrese[12], the amplitude of

density fluctuations of an arbitrary scale at the epoch when that scale re-enters the Hubble

horizon may be calculated as follows:

{ v__p~ H_max{l_l,ld'l} ~ '_2H° _q h (1 -/_2/6)-1 (ah/ao) -zU2 for ld'lh> I¢1_
p ,_2 +_,'_ h _go,8-' (ah/ao)-_'2/_ for I¢lh < I'_1,,

(14)

where a value with subscript h is evaluated at the time the perturbation originally left the

horizon, and of/h - ln(a//ah) is -,_ 50 - 70 for scales currently entering the horizon. Because

of the factor (ah/ao) -_2/_ in (14), we expect much smaller density perturbations than those

in the conventional model, loosening the parameter constraints.

If we account for the observed baryon asymmetry in terms of the standard baryogenesis

mechanism[15] through heavy Higgs bosons, the reheating temperature should be larger than

101° GeV[16]. For efficient reheating, we find

TRH,max TRH,conv e -_'_14 ( al _-_14= -- (15)
\a0 /

where TRu,¢om, -- (30V(¢l)/Tr2g.) 1/4 is the maximum reheating temperature possible in the
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corresponding conventional model. We expect a lower reheating temperature than in the

conventional model, although this depends on the detail of each reheating mechanism.

The three constraints, (13),(14) and (15), restrict the initial values ¢o and ¢o, the coupling

parameter/3, and parameters in the potential V(¢). We next examine the permitted values

for both new and chaotic inflationary potentials.

(i) New inflation type

From the above constraints, we obtain three conditions for the initial value ¢o:

¢0 < ¢cr,H---= O.16Ho A-'/2ez'_'°/2 [1 + 0.0171n (l/ol/4/lO'SGeV)] -'/2

(horizon problem)

4'0 > _be,.,l:ttt =- O.19Ho/_-l/2_e _'_4'°/2 [1 + 0.0941n (V_/4/IO'SGeV)] -1/2 (reheating)

¢0 < ¢cr,D _ O.15HoA-l/_(al/h/70) -1/2ez'¢°/2

×{1-0 [1+0 0
(density perturbations)

Note that [¢[h > [_'[h unless 3_lO-l°A-l/_(a]/h/70)-3/2(Vol/4/lOlsGeV) 2. Imposing

min{_bc_,g, ¢c_,D} > _c_,RH, we find that/3 < 0.79(af/_/70) -1/2. If the condition A<0.02e z'¢°

is satisfied, the natural initial condition of ¢o_Ho is allowed. These values are around the

natural ones of unity, without need for fine-tuning. The constraints on A and Vo are plotted

together in figure 1 for fl = 0.1,_b0 = Ho and ¢0 = lOmpL. There is a significant region in

A - Vo space where all the constraints are satisfied. The SU(5) model with V_/4 = 101SGeV

and A ,,_ I/2 is inside the allowed region. With this scenario, the slower expansion rate

during inflation allows for the suppression of density fluctuations, which had been the main

drawback of the regular new inflationary model.
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(ii) Chaotic inflation type

Assuming the initial energy scale is the Planck one, we obtain the constraints:

¢0 > ¢c_,n _ 2.3rnpL na/_ (horizon problem)

¢0 < ¢c_,nH = 2.6mpLnl/2_ -1 (reheating)

1.5mPLnl/2_8-1[1 + 2.5f12(o,I/h/70)] I/2 for _ < (n/2af/h) '/2¢0 > ¢c_,n = 1.4rnpLnl/2fl-l[1 + 2.9f12(of/h/70)] 1/2 for fl > (n/2o_f/h) 1/2

(density perturbations)

where/3 < correspondsto I¢lh< I /'lh,respectively. Just as in the new inflation

model, we find fl < 0.9(Of�h�70) -a/2. Most significantly, much lower values of if'0 than in

the standard case are now possible, leading to considerably larger and hence less fine-tuned

values of the coupling constant A,,. For example, A4 < 5.8 x 10-3f14e _"_° for the quartic case

and A2 < O.15rn2pL_32eO"¢° for the massive scalar field, so we find a natural coupling constant

A,, is possible, A different mechanism to obtain a similar constraint on _4 has been discussed

by use of a non-minimal coupling term with _ < -2 x 104 [17].

If our model is derived from the generalized Einstein theories via a conformal transfor-

mation; we must transform back t o th e original system. We present the JBD model as one

example. The JBD scalar field _JBO is related to our ¢ via the conformal transformation

= eB_¢/2 oJBDa.¢;
g_v - al_.v --

x¢ = (w + 3/2) '/2 In(@JBDG) + _¢p,_,,t (16)

with/3 = 2(w + 3/2)-a/219]. Since the JBD parameter w is constrained by observations to

be larger than 500[18],/3 is smaller than 0.09 in this model. The Cosmic time tjBD and the

scale factor aJBD are given by dtJBD = e-a_¢/4dt and ajBD = e-a_'/4a. Hence we obtain the

formula[19]:

(,,fl,,obBo "-"

JBD 2 p

Vo/V:)'/' (17)

(18)
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TRHJBD
,m_x _ e_'_¢/4TnH,m_ "" TnH,conv (19)

Therefore, in the original system, the constraints from the horizon problem and density

perturbations do not change much, while the reheating temperature is the same as in the

conventional model, where we have assumed instantaneous reheating. Hence the constraint

from successful reheating is loosened in the JBD theory (see Fig.l).

We have presented a scenario in which an inflaton potential coupled to an exponentially

decaying potential leads to a less rapidly expanding inflationary stage. Hence, the problem

of excessive density perturbations in the new inflationary model is removed and fine-tuning

in the chaotic model is lessened. In addition, the less rapid expansion of the present model

may allow successful old inflation, just as with extended inflation.

Finally, we mention that if the inflaton potential V is nonzero at the termination of in-

flation, then a decaying cosmological constant will exist. Though primordial nucleosynthesis

sets a stringent bound on the vacuum energy at that epoch [20], it may still be possible that

the relic vacuum energy contributes significantly enough to the present total energy density

to close the universe. Work on this possibility is in progress.
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Fig.i

Figure Caption

The constraints from the horizonproblem, reheatingtemperature (TRH> 10l°
GeV) and density perturbations (_Sp/p< 10-4) for /3 = 0.1, _0 = H0 and

_o = lOmpL. The shaded region is permitted. The curves RH and D are the

constraints from the reheating temperature and density perturbations, respec-

tively. The point + corresponds to the SU(5) model with Vo_/4 = 10 is GeV and

X -,_ 1/2. The dotted line RHjBD shows the reheating constraint for the JBD

theory with a; -,_ 500.
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